Reading Time: 3 minutes

[1] Q. Chai, Y. Jiao and X. Yu, “Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them”, Gels, vol. 3, no. 1, p. 6, 2017.

[2] J. Huang, J. Xiong, D. Wang, J. Zhang, L. Yang and S. Sun, “3D Bioprinting of Hydrogels for Cartilage Tissue Engineering,” Gels, vol. 7, no. 3, p. 144, 2017.

[3] F. Olate-Moya, L. Arens, M. Wilhelm, M. A. Mateos-Timoneda, E. Engel and H. Palza, “Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication,” ACS Applied Materials and interfaces, vol. 12, no. 4, pp. 4343-4357, 2012.

[4] Q. Li, S. Xu, Q. D. Q. Feng, L. Yao, Y. Zhang, H. Gao, H. Dong, D. Chen and X. Cao, “3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration,” Bioactive Materials, vol. 6, no. 10, pp. 3396-3410, 2021.

[5] J. Huang, Z. Huang, Y. Liang, W. Yuan, L. Bian, L. Duan, Z. Rong, J. Xiong, D. Wang and J. Xia, “3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair,” Biomaterials Science, vol. 9, no. 7, pp. 2620-2630, 2021.

[6]  F. Olate-Moya, L. Arens, M. Wilhelm, M. A. Mateos-Timoneda, E. Engel and H. Palza, “Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication,” ACS Applied Materials and interfaces, vol. 12, no. 4, pp. 4343-4357, 2012.

[7] B. de Melo, Y. Jodat, S. Mehrota, M. Calabrese, T. Kamperman, B. Mandal, M. Santana and E. Alsberg, “3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties,” Advanced Functional Materials, vol. 29, no. 51, 2019.

[8] Y. A. Jodat, K. Kiaee, D. V. Jarquin, R. Hernandez, T. Wang, S. Joshi, Z. Rezaei, B. de Melo, D. Ge, M. Mannoor and S. R. Shin, “A 3D‐Printed Hybrid Nasal Cartilage with Functional Electronic Olfaction,” Advanced Science, vol. 7, no. 5, p. 1901878, 2020.

[9] L. Aquero, S. Alpdagtas, E. Ilhan, D. Zaldivar-Silva and O. Gunduz, “Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review,” European Polymer Journal, vol. 160, p. 110807, 2021.

[10] S. Ibrahim, N. Azam and K. Amin, “Sodium alginate film: the effect of crosslinker on physical and mechanical properties,” IOP conference Series: Materials Science and Engineering, vol. 509, p. 012063, 2019.

[11] S. Mad-Ali, S. Benjakul, T. Prodpran and S. Maqsood, “Characteristics and gelling properties of gelatin from goat skin as affected by drying methods,” Journal of Food Science Technology, vol. 54, no. 6, pp. 1646-1654, 2017.

[12] A. Bigi, G. Cojazzi, S. Penzavolta, N. Roveri and K. Rubini, “Stabilization of gelatin films by crosslinking with genipin,” Biomaterials, vol. 23, no. 24, pp. 4827-4832, 2002.

[13] Y. Liu, L. Z, S. Yang, Y. Zhang, B. Yao, W. Song and X. Fu, “Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels,,” Burns Trauma, vol. 27, no. 8, 2020.

[14] J. Eschweiler, N. Horn, B. Rath, M. Betsch, A. Baroncini, M. Tingart and F. Migliorini, “The Biomechanics of Cartilage-An Overview,” Life, vol. 11, no. 4, 2021.

[15]      “Alginic Acid Sodium Salt,” Sigma Aldrich, [Online]. Available: https://www.sigmaaldrich.com/CA/en/product/aldrich/180947. [Accessed 23 June 2022].

[16]      “Gelatin From Porcine Skin,” Sigma Aldrich, [Online]. Available: https://www.sigmaaldrich.com/CA/en/substance/gelatinfromporcineskin123459000708. [Accessed 23 June 2022].

[17] K. Holzl, M. Fursatz, H. Gocerler, B. Schadl, S. Zigon-Branc, M. Markovic, C. V. H. J. Gahleitner, S. Van Vlierberghe, K. Anne, S. Baudis, A. Pauschitz, R. Heinz and A. Ovsianikov, “Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects,” Journal of Tissue Engineering and Regenerative Medicine, vol. 16, no. 2, pp. 207-222, 2021.

[18] A. Sertkaya, A. Jessup and R. DeVries, “Cost of Developing a Therapeutic Complex Medical Device for the U.S. Market,” in Harvard Center for Risk Analysis “Risk Assessment, Econimc Evaluation and Decisions Workshop“, Lexington, 2019.

[19]  L. B. Murphy, M. G. Cisternas, D. J. Pasta and C. G. Y. E. H. Helmick, “Medical Expenditures and Earning Losses Among US Adults With Arthritis in 2013,” Arthritis Care & Research, vol. 70, no. 6, pp. 869-876, 2018.

[20]      A. C. Daly, F. E. Freeman, T. Gonzalez-Fernandez, S. E. Critchley, J. Nulty and D. J. Kelly, “3D Bioprinting for Cartilage and Osteochondral Tissue Engineering,” Advanced Healthcare Materials, vol. 6, no. 22, 2017.

[21]      K.-C. Hung, C.-S. Tseng, L.-G. Dai and S.-h. Hsu, “Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering,” Biomaterials, vol. 83, pp. 156-168, 2016.

[22] J. Clancy, A. McVicar and J. Mooney, “Homeostasis 6: nurses as external control agents in rheumatoid arthritis”, British Journal of Nursing, vol. 20, no. 8, pp. 497-507, 2011.

[23] W. Zhang, H. Ouyang, C. R. Dass and J. Xu, “Current research on pharmacologic and regenerative therapies for osteoarthritis,” Bone Reaserch, vol. 4, no. 15040, pp. 1-14, 2016.

[24] D. Bhatia, T. Bejarano and M. Novo, “Current Interventions in the Managment of Knee Osteoarthritis,” Journal of Pharmacy and BioAllied Sciences, vol. 5, no. 1, pp. 30-38, 2013.